
Belief revision theory and its applications: a manifesto

Andreas Herzig
U. of Toulouse and CNRS, IRIT, France

BRA workshop, Ponta Delgada, Feb. 9, 2015

1 / 14

Introduction

revision operation ∗ : 2Fml × Fml −→ 2Fml

B ∗ A = “belief state after input A is taken into account”
B ∈ 2Fml = previous belief state
A = new piece of information (‘input’)

belief revision understood in a large sense
includes belief update (differences won’t matter here)
perhaps better called belief change

belief change theory = AGM/KM

2 / 14

What belief change theories are about

1 postulates = metalanguage axioms
B ∗ A 6|= ⊥
B ∗ A |= A (‘success’)
. . .

2 semantics
Models(B ∗ A) = min≤B Models(A)
≤B = preorder on the set of valuations, indexed by B

comparative possibility
epistemic entrenchment
. . .
“relates two imprecise concepts” [Lewis 1973]

3 / 14

What are the applications of belief change theories?

philosophy:
derogation of laws [Alchourrón]
scientific theories [Gärdenfors]
. . .

computer science:
databases
knowledge representation (ontologies)
BDI agents
planning
program synthesis
. . .

⇒ relevant for virtually any area

4 / 14

What does AGM/KM theory offer
to computer science applications?

“We got a Ferrari and we need a Fiat 500” [Fermé]

belief change is only one component of an intelligent system
in AI we also have to deal with goals and intentions,
higher-order beliefs, normative constraints (obligations,
permissions), plan generation, argumentation, . . .
⇒ belief change operation should be simple but versatile

5 / 14

What does AGM/KM theory offer
to computer science applications? (ctd.)

1 we need one operation and AGM offers many
semantics: depends on a total preorder ≤B
syntax: postulates don’t identify a single ∗ but a family

compare to the ‘postulates’ for Cn (or `) in proof theory:
∃! consequence relation for classical (intuitionistic,. . .) logic

worse:
20+ alternative frameworks [Rott, Hansson, Fermé,. . .]
theories of iterated belief revision [Darwiche&Pearl,. . .]
theories of syntax-based belief revision [Hansson, Nebel,. . .]

2 we need a simple operation and AGM is complicated
represent each total preorder ≤B on valuations: 22card(Fml)

pairs!
3 AGM is heavily underconstrained

even the drastic ∗d satisfies the basic AGM postulates

B ∗d A =

Cn(A) if ¬A ∈ Cn(B)

Cn(B ∪ {A }) otherwise

4 AGM is for classical propositional calculus
epistemic: B ∗ (p∧¬Kp) 6|= p∧¬Kp [Fuhrmann] 6 / 14

Some concrete belief change operations

build orderings from symmetric difference between valuations

diff(V ,V1) = (V \ V1) ∪ (V1 \ V)

V1 <V V2 iff diff(V ,V1) ⊂ diff(V ,V2)

⇒Winslett’s update operator (‘PMA’), Satoh’s revision operator

build orderings from card(diff(V,V′)) (‘Hamming distance’)
⇒ Forbus’s update operator, Dalal’s revision operator

underlying hypothesis: if p , q then p and q are independent
if B |= q then B ∗ p |= q
impossible to formulate integrity constraints, such as p → ¬q
(but more later)

only defined semantically (no axioms/postulates)
∗ is not in the object language

∗ : 2Lang(PC) × Lang(PC) −→ 22Prp

7 / 14

A computer science view:
change beliefs = execute a program

logic of (possibly nondeterministic) programs = dynamic logic
[π]B = “B is true after every possible execution of π”
〈π〉B = “B is true after some possible execution of π”

idea:
1 associate a update/revision program πA to A
2 prove:

B ∗ A |=PC C iff |=DL B →
[
πA

]
C

iff |=DL
〈
(πA)

−1
〉
B → C

hence:

B ∗ A ≡
〈
(πA)

−1
〉
B

8 / 14

An interesting dialect of dynamic logic
Dynamic Logic of Propositional Assignments DL-PA

[Herzig et al., IJCAI 2011, Balbiani et al., LICS 2012]
propositional assignments +p and −p
‘DEL-like’: reduction to propositional calculus PC
good mathematical properties (compact, interpolation, . . .)
PSPACE complete (just as QBF)

captures the existing concrete belief change operations
[Herzig, KR 2014]

B ∗pma A = Models
(〈
(πpma

A)−1
〉
B
)

B ∗forbus A = . . .

B ∗dalal A = . . .

programs make heavily use of nondeterministic choice, but
length is polynomial in A (and, for revision, in B)
allows to go beyond classical propositional calculus

modification of planning tasks
modification of abstract argumentation frameworks

9 / 14

Modification of planning tasks

SG

s0•

22

--

reachable via PlanOps

What if a planning task has no solution?
1 modify the set of goal states such that it is reachable from s0

‘oversubscribed goals’ [Smith, ICAPS 2004, . . .]
2 modify s0 such that the goal states is reachable

‘finding good excuses’ [Göbelbecker et al., ICAPS 2010]
3 augment the set of planning operators
4 . . .

10 / 14

Modification of planning tasks, ctd.

SG

s0•

22

--

reachable via PlanOps

requires revision by a counterfactual statement:

s0 ∗ “SG is reachable”

SG ∗ “s0 can reach me”

can be captured in DL-PA [Herzig et al., ECAI 2014]

“SG is reachable” =
〈
πPlanOps

〉
SG

“s0 can reach me” =
〈
(πPlanOps)

−1
〉
s0

where πPlanOps iterates nondeterministic choice of a planning operator 11 / 14

Modification of an abstract argumentation framework
theory of an argumentation framework:

Th(A ,R) =
∧

(a,b)∈R

Atta,b ∧
∧

(a,b)<R

¬Atta,b

logical characterisation of extensions:

Stable =
∧
a∈A

(
Ina ↔ ¬

∨
b∈A

(Inb∧Atta,b)
)

(exists for many other semantics [Baroni&Giacomin])
the programming view: build an extension = execute a
program

‘generate-and-test’:

makeExt = vary({Ina : a ∈ A }); Stable?

more sophisticated algorithms can also be recast
. . . and proved correct in the logic!

modify (A ,R) such that Goal is true = update by a
counterfactual statement [Doutre et al., KR 2014]

Th(A ,R) ∗ 〈makeExt〉Goal (credoulous)
Th(A ,R) ∗ [makeExt]Goal (skeptical) 12 / 14

A more informed version of integrity constraints

old problem in databases: what if a transaction leads to a
violation of some integrity constraint IC?

example: (¬p∧q) ∗ p = p∧q violates IC = p → ¬q
requires a repair
much work in the 80ies, but basically still open

active integrity constraints: guide the repair
[Flesca, Greco, Zumpano 2004; Caroprese, Truszczynski, Cruz-Filipe,. . .]

r = 〈p→¬q, -q〉

can be captured in DL-PA [Feuillade&Herzig, JELIA 2014]

program πr = p∧q)?; -q
several semantics: weakly founded, founded, . . .

13 / 14

Conclusion

AGM/KM too far from computer science applications
concrete semantics are most useful

Winslett, Satoh, Forbus, Dalal

revise/update = execute a program

dynamic logic can express revision by counterfactuals

we can reason about change in the logic

14 / 14

